DATA SHEET

BF420; BF422
 NPN high-voltage transistors

Product specification
Supersedes data of September 1994
File under Discrete Semiconductors, SC04

FEATURES

- Low feedback capacitance.

APPLICATIONS

- Class-B video output stages in colour television and professional monitor equipment.

DESCRIPTION

NPN transistors in a TO-92 plastic package. PNP complements: BF421 and BF423.

PINNING

PIN	DESCRIPTION
1	base
2	collector
3	emitter

MAM259

Fig. 1 Simplified outline (TO-92) and symbol.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {CBO }}$	collector-base voltage BF420 BF422	open emitter	$\left.\right\|^{-}$	$\begin{aligned} & 300 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {CEO }}$	collector-emitter voltage BF420 BF422	open base		$\begin{aligned} & 300 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {CM }}$	peak collector current		-	100	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }} \leq 25^{\circ} \mathrm{C}$	-	830	mW
$\mathrm{h}_{\text {FE }}$	DC current gain	$\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}$	50	-	
$\mathrm{Cre}_{\text {re }}$	feedback capacitance	$\mathrm{I}_{\mathrm{C}}=\mathrm{i}_{\mathrm{C}}=0 ; \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	-	1.6	pF
f_{T}	transition frequency	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{f}=100 \mathrm{MHz}$	60	-	MHz

NPN high-voltage transistors

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {CBO }}$	collector-base voltage BF420 BF422	open emitter		$\begin{aligned} & 300 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {CEO }}$	collector-emitter voltage BF420 BF422	open base		$\begin{aligned} & 300 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {EBO }}$	emitter-base voltage	open collector	-	5	V
I_{C}	collector current (DC)		-	50	mA
$\mathrm{I}_{\text {CM }}$	peak collector current		-	100	mA
$\mathrm{I}_{\text {BM }}$	peak base current		-	50	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }} \leq 25^{\circ} \mathrm{C}$; note 1	-	830	mW
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-	150	${ }^{\circ} \mathrm{C}$
Tamb	operating ambient temperature		-65	+150	${ }^{\circ} \mathrm{C}$

Note

1. Transistor mounted on a printed-circuit board.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$R_{\text {th } j \text {-a }}$	thermal resistance from junction to ambient	note 1	150	K/W

Note

1. Transistor mounted on a printed-circuit board.

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{I}_{\text {CBO }}$	collector cut-off current	$\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=200 \mathrm{~V}$	-	10	nA
		$\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=200 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}$	-	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {EBO }}$	emitter cut-off current	$\mathrm{I}_{\mathrm{C}}=0 ; \mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}$	-	50	nA
$\mathrm{h}_{\text {FE }}$	DC current gain	$\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}$	50	-	
$\mathrm{V}_{\text {CEsat }}$	collector-emitter saturation voltage	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$	-	0.6	V
C_{re}	feedback capacitance	$\mathrm{I}_{\mathrm{C}}=\mathrm{i}_{\mathrm{C}}=0 ; \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	-	1.6	pF
f_{T}	transition frequency	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{f}=100 \mathrm{MHz}$	60	-	MHz

PACKAGE OUTLINE

Dimensions in mm.
(1) Terminal dimensions within this zone are uncontrolled.

Fig. 2 TO-92.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

